新しいオープンソース ソフトウェアによって、フェデレーテッド ラーニングのための共通コンピューティング基盤をヘルスケア、製造、金融サービスなどの業界に提供
NVIDIA は、より一般化可能な AI モデルの分散共同開発を支援するソフトウェア開発キットである NVIDIA FLARE をオープンソース化することにより、かつてないほど容易にフェデレーテッド ラーニングを利用できるようにしようとしています。
フェデレーテッド ラーニングは、わずかなデータ、機密のデータ、または多様性に欠けるデータを扱う場合に特に役立つ、プライバシー保護を可能にするテクノロジです。それだけでなく、組織のデータ収集方法や、患者や顧客の人口統計によって偏りが生じることがある大規模データセットにも役立ちます。
NVIDIA FLARE (Federated Learning Application Runtime Environment) は、医用画像、遺伝分析、オンコロジー、COVID-19の研究への AI 応用に利用されている NVIDIA Clara Train のフェデレーテッド ラーニング ソフトウェアの基盤となるエンジンです。この SDK を使用すれば、研究者やデータ サイエンティストは既存の機械学習やディープラーニングのワークフローを分散パラダイムに適応させることができます。
NVIDIA FLARE のオープンソース化により、研究者やプラットフォーム開発者はフェデレーテッド ラーニング ソリューションをカスタマイズするためのツールが増えることで、ほぼすべての業界で最先端の AI の活用がさらに進むことが期待されます。
この SDK を使用すれば、研究者は各種フェデレーテッド ラーニング アーキテクチャの中から最適なものを選び、ドメイン特化型アプリケーションに合わせてアプローチを調整することができます。また、プラットフォーム開発者は NVIDIA FLARE を使用して、複数機関がコラボレーションするためのアプリケーション構築に必要な分散インフラストラクチャを顧客に提供できるようになります。
さまざまな業界に対応する、柔軟なフェデレーテッド
フェデレーテッド ラーニングの参加機関は、各機関の専有データベースをプールまたは交換する必要なく、協力して AI モデルのトレーニングや評価を行います。NVIDIA FLARE は、ピアツーピア型、循環型、サーバー/クライアント型など、さまざまなアプローチのための各種分散アーキテクチャを提供します。
NVIDIA は、膵臓腫瘍のセグメント化、乳がんリスクを把握するためのマンモグラフィの乳房組織密度の分類 、 COVID-19感染症患者の酸素必要量の予測を支援するフェデレーテッド ラーニング プロジェクトにおいて、各参加機関が学習済みのモデル パラメーターを共通サーバーに送信し、グローバル モデルに集約するというサーバー/クライアント手法を使用しました。
サーバー/クライアント アーキテクチャは、NVIDIA FLARE を使用した 2 つのフェデレーテッド ラーニング コラボレーションでも使用されました。NVIDIA は、Roche Digital Pathologyの研究者と協力し、バーチャル スライド画像 (WSI) を使用した内部シミュレーションの実行による分類に成功したほか、オランダに拠点を置くErasmus Medical Centerと協力し、統合失調症に関連する遺伝的変異の発見への AI 応用にも成功しています。
しかし、すべてのフェデレーテッド ラーニング アプリケーションがサーバー/クライアント アプローチに適しているわけではありません。そこで、NVIDIA FLARE はそれ以外のアーキテクチャもサポートすることにより、フェデレーテッド ラーニングをより幅広いアプリケーションに利用できるようにします。有望なユース ケースとして、エネルギー企業における地震データや裸孔データの分析、メーカーにおける工場オペレーションの最適化、金融企業における不正検出モデルの改善などの支援が考えられます。
NVIDIA FLARE とヘルスケア向け AI プラットフォームの統合
NVIDIA FLARE は、医用画像のためのオープンソース フレームワークであるMONAIなど、既存の AI イニシアティブと統合できます。
ハーバード大学医学大学院の放射線科准教授であり、MONAI コミュニティのフェデレーテッド ラーニング ワーキング グループのリーダーである ジャヤシュリー カラパシー (Jayashree Kalapathy) 博士は、次のように述べています。「フェデレーテッド ラーニング研究の加速に向けた NVIDIA FLARE のオープンソース化は、複数機関のデータセットへのアクセスが極めて重要である一方で、患者のプライバシーに対する懸念からデータの共有が制限されることもある医療部門にとって特に重要です。NVIDIA FLARE に貢献し、引き続き MONAI との統合を進めて医用画像研究の新境地を開拓することを楽しみにしています。」
NVIDIA FLARE は、以下の機関によるフェデレーテッド ラーニング ソリューションでも使用される予定です。
- 米国放射線学会 (ACR):ACR は NVIDIA と協力して、乳がんやCOVID-19関連の放射線画像に AI を応用するフェデレーテッド ラーニング研究を行っています。数万人に及ぶ ACR メンバーが利用可能なソフトウェア プラットフォームである ACR AI-LAB で、NVIDIA FLARE を活用する予定です。
- Flywheel:同社の Flywheel Exchange プラットフォームでは、バイオメディカル研究用データやアルゴリズムへのアクセス、共有、分析やトレーニングのためのフェデレーテッド プロジェクトの管理、NVIDIA FLARE をはじめとするフェデレーテッド ラーニング ソリューションの選択を行えるようにしています。
- Taiwan Web Service Corporation:NVIDIA FLARE をベースにしてフェデレーテッド ラーニングを実行可能な、GPU を活用した MLOps プラットフォームを提供しています。現在、同社のプライベート クラスターでは 5 つの医用画像プロジェクトが進行しており、それぞれ複数の病院が参加しています。
- Rhino Health:NVIDIA Inception プログラムのパートナーであり、メンバーでもある同社は、そのフェデレーテッド ラーニング ソリューションに NVIDIA FLARE を統合しています。このソリューションは、マサチューセッツ総合病院における脳動脈瘤の診断精度を高める AI モデルの開発や、米国立がん研究所の早期発見研究ネットワーク (Early Detection Research Network) における膵臓がんの初期兆候を発見する画像診断 AI モデルの開発と検証に活用されています。
Rhino Health の創業者であるイッタイ ダヤン (Ittai Dayan) 博士は、次のように述べています。「ヘルスケア研究者同士の効果的かつ効率的コラボレーションのためには、患者のプライバシーを侵害するリスクがない共通の AI 開発プラットフォームが必要です。NVIDIA FLARE を搭載したRhino Health の『Federated Learning as a Platform(プラットフォームとしてのフェデレーテッド ラーニング)』ソリューションは、ヘルスケア AI のインパクトを加速させるのに役立つツールになるでしょう。」
NVIDIA FLARE をダウンロードして、フェデレーテッド ラーニングを始めましょう。NVIDIA の取り組みについては、北米放射線学会の年次イベント、RSNAで、NVIDIA ヘルスケア事業開発担当ディレクターのデイビッド ナイフォルニー (David Niewolny) による特別講演をぜひご覧ください。
こちらから NVIDIA ヘルスケア ニュースにぜひご登録ください。